GreatedlbyMattiasiGustavsson

User Handbook

1.Introduction

Welcome to the world of Yarnspin, a friendly and approachable game engine
designed to help you create your very own choose-your-own-adventure story
games! Drawing inspiration from home computer game development tools from
the 1980s and 1990s, Yarnspin aims to provide an accessible and enjoyable
experience, whether you're a seasoned developer or just starting out. In this
introductory chapter, we’ll cover the essential information you need to get started
with Yarnspin, including system requirements, how to make the most of this
manual, and what you'll find in the Yarnspin package. So, let’s dive in!

System Requirements

Yarnspin games will run on Windows, MacOS, Linux and web browsers.

The Yarnspin development tools runs on Windows, MacOS and Linux, but it is not
possible to use a web browser to develop Yarnspin games.

In addition to the Yarnspin tools, you will also need a text editor - any text editor
will work, as long as it can save plain text files. Sublime (www.sublimetext.com) is a
popular choice that runs on all three operating systems.

It might also be useful to have a paint program or image editor, as well as sound
and music programs.

Using This Manual

This manual is designed to be your comprehensive guide to Yarnspin, providing
you with all the information you need to create engaging choose-your-own-
adventure story games.

In addition to explaining key concepts, the manual will walk you through the
process of creating a simple story game, or “yarn”. By breaking down a sample
yarn, you'll gain an understanding of how the various components of Yarnspin
work together to create an interactive narrative experience.

As you progress through the manual, you'll find numerous examples, tips, and
best practices that will help you become proficient in using the Yarnspin engine.
What's in the package

When you open up the Yarnspin package, you’ll find a set of folders and files. The
folders already contains files used for the tutorial game, but as you make your own

http://www.sublimetext.com/

yarns, you will replace most of these files with your own content.
Here’s a quick overview of what each folder contains:

e build/: This folder contains support files used internally by Yarnspin to build
stand-alone redistributable packages of your games. Normally, you would
never have to touch thefiles in this folder.

e faces/:In here, you will save portrait pictures of all characters in your game.

e fonts/: A collection of fonts to give your game that perfect look and feel. A
bunch of fonts are included, but feel free to add your own.

e images/: Here you put all images used to represent the different locations of
the game.

e palettes/:Yarnspin games can use a palette to give the game a distinct look.
This folder includes some palette definitions, but you can also add your own.

e scripts/: Every part of a yarn is defined in script files, and they are placed in
this folder. The names or extension of the files in this folder doesn’t matter -
they will all be loaded and compiled into a single game.

e sound/: Yarnspin games can have music and sound effects, and those are
placed in this folder.

And of course, you'll find two essential files:

yarnspin.exe : The heart of Yarnspin! This engine processes, compiles, and runs
and packages your yarns.

yarnspin.pdf : The very documentation you're reading right now, guiding you
step by step on your Yarnspin journey.

About the Author

My journey into game development began in the 1980s with a love for home
computers and programming. Starting with a Commodore 64, and later moving
on to the Atari ST, | spent countless hours learning to code first in BASIC and later
in assembler, making games and running tabletop RPGs with friends.

Later in life, | worked as a game developer, mostly in the engine teams for games
like Crackdown, Bodycount and Battlefield 4. In 2014, | decided to leave the
professional game development world to return to my roots, focusing on making
games as a hobby and fueling my love for retro games.

With Yarnspin, | aim to share my appreciation for game development and
empower others to create their own games. Drawing inspiration from the friendly
and approachable nature of 80s and 90s game development tools, | hope Yarnspin
will enable you to embark on your own creative journey.

2.Getting Started

In this chapter, we'll help you dive into the world of Yarnspin by guiding you
through the sample game, understanding the basic concepts of Yarnspin, and
creating your very first yarn. By the end of this chapter, you'll have a solid
foundation in Yarnspin and be well on your way to creating interactive stories of
your own.

Running the Sample

Before you start crafting your own game, it’s useful to get familiar with the look
and feel of a Yarnspin game by running the provided sample. The tutorial gameis a
good way to understand how the engine works and visualize the concepts we'll be
discussing in the next section.

To play the tutorial game, simply launch the yarnspin executable in the root
folder of the yarnspin package.

Take your time to explore the tutorial and don’t hesitate to revisit it later as you
progress through this manual. It will serve as a valuable reference when working
on your own projects.

Basic Concepts

Now that you have experienced a Yarnspin game first-hand, let’s discuss some
fundamental concepts that will help you understand the underlying structure of
Yarnspin projects.

Sections

Sections are the building blocks of your Yarnspin game. They define the structure
of your story and allow you to organize your game into manageable parts. There
are several types of sections, each serving a specific purpose.

Location Sections

Location Sections Location sections represent different places in your game. They
serve as the backdrop for the story and give context to the player’s actions.
Locations can be described in text, and you can use images to further enhance the
experience. Options within location sections provide players with choices to
navigate through the game world and interact with their surroundings.

Dialog Sections

Dialog sections handle the conversations between characters in your game. They
enable you to create dynamic and engaging dialogues, allowing the player to
interact with and influence the story through their choices. Dialog options give
players the ability to respond to other characters, shaping the direction and
outcome of the conversation.

Character Sections

Character sections define the attributes of each character in the story. They
provide a way to store and manage information about the characters, such as their
names and images.

Globals

Globals are declarations that control the overall appearance and behavior of your
game. They include settings like the game’s title, author, starting section, fonts,
colors, and more. Globals are essential for customizing your game and ensuring a
consistent look and feel.

Flags

Flags are used to track the state of your game, such as which events have occurred,
and can be set, cleared, or toggled. They allow you to create dynamic, interactive
experiences by altering the game state based on player choices and actions.

Items

Items are objects that the player can collect, use, or drop throughout the game.
They play a crucial role in creating a sense of immersion and encouraging
exploration within your Yarnspin game.

Conditions

Conditions determine whether certain elements should be displayed or activated
based on the current state of your game. By using conditions with flags and items,
you can create branching paths and interactions that depend on what the player
has done or what they possess.

With these core concepts in mind, you'll have a clearer understanding of how
Yarnspin games are structured and how the different elements work together. In
the next section, we'll guide you through creating your very first yarn, where you'll
put these concepts into practice.

Your FirstYarn

In this section, we’'ll guide you through creating a very simple Yarnspin game from
scratch. We'll start by removing the existing scripts and then walk you through
writing a small, but functional, script file. The goal is to create a single location
with a single dialog to help you understand the basic structure of a Yarnspin game.

Step 1: Removing Existing Scripts
Before you start creating your own game, make sure to remove any existing scripts

in the ‘scripts’ folder. This will ensure that your new script won’t conflict with any
pre-existing files.

Step 2: Creating a New Script File

Create a new text file in the ‘scripts’ folder and name it “my_first_yarn.txt”. This file
will serve as the script for your simple Yarnspin game.

Step 3: Defining Globals

At the top of the “my_first_yarn.txt” file, define the following globals:

title: My First Yarn
author: Your Name
start: my_location

This sets the title, author, and starting location for your game.
Step 4: Creating a Location Section

Now, let’s create a simple location section. Add the following code to your script
file:

=== my_location ===

img: office.jpg
txt: You are standing in a small room. There is a person here, it's Carol

opt: Talk to Carol.
act: my_dialog

This code defines a location called “my_location” with an image and description.
There’s also an option for the player to talk to Carol, which will lead to a dialog
section.

Step 5: Creating a Character Section

Before defining a dialog with a character, we need to create a character section.
Add the following code to your script file:

s==NcaRoll===
name: Carol the Neighbor

short: Carol
face: carol.jpg

This code defines a character named Carol, with a short name and an image.
Step 6: Creating a Dialog Section

Next, let’s create the corresponding dialog section. Add the following code to your
script file:

=== my_dialog ===

carol: Hello! Welcome to my humble abode.
player: Hi, thank you for having me.

say: Say goodbye and leave.
act: end_conversation

This code defines a simple dialog section called “my_dialog” with a conversation
between the player and Carol. The player has an option to say goodbye and leave
the conversation.

Step 7: Ending the Conversation

Finally, let’s create an action to end the conversation and return to the location.
Add the following code to your script file:

=== end_conversation ===

carol: Goodbye! Have a great day!
act: my_location

This code defines an action called “end_conversation” that ends the conversation
and returns the player to “my_location”.

Step 8: Running Your First Yarn

Now that you've created your simple Yarnspin game script, save the
“my_first yarntxt” file and run the Yarnspin compiler to generate the
“yarnspin.dat” file. To play your game, simply launch the Yarnspin player.

Congratulations! You've just created your very first Yarnspin game. As you become
more comfortable with the Yarnspin scripting language, you can start to add more
locations, dialogs, characters, and interactions to

3.Unwinding the sample Yarn

Overview
start.txt
locations.txt
carol.txt
john.txt

alice.txt

4.SpinningaYarn
Planning

Story

Scripting

Art

Sound

Package and release

5.Scripting Reference

When you run yarnspin.exe it will compile all the scripts and assets into a single
compressed vyarnspin.dat file. You can then distribute yarnspin.exe and
yarnspin.dat , and that is the complete game ready for distribution. If there is no
scripts folder in the same location as yarnspin.exe, it won't attempt
compilation.

When compiling a yarn, it will load all files, regardless of extension, in the
scripts folder and try to compile them. It doesn’t matter what you put in
different files, all files will be loaded and processed in one go. A script file can
contain many sections, where a section is declared by putting three equal signs
before and after its name - and names must be unique across all files. Like this: ===
my_section === Everythingthat comes before the first section in afileisread asa
global, see below.

Sections comes in three flavours: location, dialog and character, but they are all
declared that same way.

Note: as you read this documentation, make sure you have played through the
tutorial game, which illustrates the concepts described here. It probably also helps
to revisit it and look at its scripts as you read through the docs.

The tutorial game can be played here:

https://mattiasgustavsson.com/wasm/yarnspin

Location sections

A location section can contain one or more image and text declarations, as well as
options. Each declaration can optionally have a condition before it, and the
declaration will only be included if the condition evaluates to true. Conditions can
only test flags, and are written with the flag name before a question mark like this:
my_flag ? txt: This text will only display if my_flag has been set You
can check if a flag is not set by placing the word not beforeit not my_flag ? txt:
This text will only display if my_flag has NOT been set You can check if

any out of a list of flags are set, by listing multiple flags my_flag other_flag
third_flag ? txt: This text will only display if ANY of the three flags

have been set You can check if several flags are set by writing them as multiple
condition statements my_flag ? other_flag ? third_flag ? txt: This text
will only display if all three flags have been set Please note that when
using not for multiple flags, the not is only apply for the single flag following it,
not to the whole list of flags.

A section can use img to display an image img: picture_of_a_room.jpg Note
that all images must be in the images folder. If multiple images are specified, only
one will actually be displayed - use condition statements to control which one.

A section can use txt to display text, and it can have multiple txt statements to
display multiple texts txt: This text will be displayed. txt: And so will
this. Note thatyou can use conditions to control which texts are displayed.

https://mattiasgustavsson.com/wasm/yarnspin

A section can use act to perform action, like setting, clearing or toggling a flag
act: set my_flag act: clear other_flag act: toggle third_flag or go to
another section, after the player clicks the mouse or press a key to dismiss the
currentone act: my_other_section

The act statement can also be used to get or drop items act: get Some item or
act: drop Some item

After the img/txt/act declarations, a location section can have use, chr and opt
declarations

chr declarations adds a character to the character list, and if the player clicks on it,

we go to the section specified in its corresponding act statement. A chr
declaration is always followed by an act statement with a section name. chr:
some_character act: talk_to_character Note that some_character needs to
be defined somewhere as a character section (see below) and that
talk_to_character needs to be defined as either a location section or a dialog
section

use works similarly, but for items use: Some item act:
section_describing_what_happens Ifthe player does not currently have the item
in his inventory, the use declaration isignored.

opt adds an option at the bottom of the screen, and also has a corresponding act

declaration specifying a section to go to opt: I want to go to the other
section act: my_other_section

Note that use, chr and opt declarations can also have conditions specified
before them, and the condition will control whether the following use/chr/opt
declaration is active or not.

A section is determined to be a location section if it contains any of these
declarations listed, and no other types of declarations.

Dialog sections

A dialog section can not use the img, txt or chr declarations, but it can use the
act and use declarations as described for the location sections, including
conditions.

The main part of the dialog are phrase declarations, which consists of a character
name followed by some text: some_character: Hello! some_character: Good to
see you again Note that some_character must have been declared somewhere
as a character section (see below). The character section defines the displayed
name of the character, and what image is used as its portrait.

You can also use the pre-defined character player for lines that are spoken by the
[ﬂayer player: Hey, maybe you can help me? some_character: I certainly
hope so! player: You are most kind. Linesspoken by player will be displayed
at the bottom of the screen and can be in a different font/color.

There can be as many phrase declarations as you like, and they will be run through
in sequence. After all have been displayed, you can have use declarations, working
just like for location sections, and say declarations, which allows the player to
choose what to say next. They work just like the opt declarations for location
sections, but for dialogs. “* some_character: How can | help you?

say: | don’t think you can... act: some_section

say: | need a million dollars, right now! act: other_section” Just as for location
sections, these can have conditions, and theact statement is a section
(dialog or location) to jump to when the option is selected.

A section is determined to be a dialog section if it contains any of the declarations
listed for dialog sections, and no other types of declarations.

Character sections

Character sections are much simpler, and you can not jump to a character section
with an act statement. A character section defines the name and appearance for a
character only.

=== some_character ===

name: The Abominable Snowman
short: Frosty

face: cool_portrait.png

The section name some_character is used in location sections, in the chr
statements, and in dialog sections in phrase declarations. The section name is not
displayed anywhere, it is just for referring to the character.

When a character is added to a location using the chr statement, the short name
is displayed in the list to the left on the screen.

When a dialog is playing, the longer name is displayed above the portrait picture
defined as face . All portrait images must be in the faces folder. There are 1000
auto generated portrait images included, but you can of course make your own as
well.

Globals

Any declarations that appear before the first section definition in a file is a global
declaration. These control the overall appearance and behaviour of the game. Each
global can be declared only once throughout all files, but it doesn’t matter which
globals are declared in what file.

The list of globals are:

title

The name of this yarn - will be displayed in the title bar of the window of native
builds.

author

Your name, as the author of the yarn

start

Specifies which section the game starts in. Must be a defined dialog or location
section.

items

Items, as used with get/drop/use declarations, doesn’t have to be declared
ahead of referring to them. But sometimes you might want to, as to avoid spelling
mistakes and hard to find bugs. If you specify the items global, it must contain a
comma separated list of ALL items referred to in any get /drop [use statementsin
your scripts, or you will get a compile error. Specifying items is optional, butifyou
do specify it, all items must be listed.

flags

Just as for items, you might want to explicitly pre-define all flags before using
them in set/clear/toggle statements or conditions. The flags global is
optional, but if present it must list all flags.

palette

This points to an image file in the palettes folder, which will be processed and
used as the palette for the game. An image used as a palette must have at most 256
distinct colors, but may have less. To process images for the game, a look up table
has to be generated the first time a palette is used, and this can be a slow
operation, especially for palettes with many colors. But it only needs to be done

once per palette, and only while you are writing your yarn - the final distribution
containsjust pre-processed, run-time ready data.

display_filters

Yarnspin has two different CRT emulation filters, emulating the look of either an
old TV or an old PC monitor. This global allows you to specify which one to use, like
display_filters: tv or display_filters: pc.You can turn the filter off as well,
for crisp pixels: display_filters: none.ltis also possible to specify a list of filters,
in which case the player will be able to cycle through them, in the order specified,
by pressing F9 in the game. Declaring multiple filters looks like this:
display filters: tv, pc, none.

logo

Specifies one or more image files, as a comma separated list, to display at the start
of the game, before jumpin to the first section. Images needs to be in the images
folder, and will be displayed in order, waiting for player input to dismiss each one.

alone_text

On the left of the screen is a list of characters present at the current location. If
there are no characters in a location, the default is to display a text there instead
thatsays You are alone. .Using this global, you can change what the text says, or
disable it altogether by simply specifying alone_text:

font_description
font_options
font_characters
font_items
font_name

These globals specify font files to use for the various text areas in the game. Font
files must all be stored in the fonts folder, and must be .ttf files containing pixel
fonts. A selection of fonts have been included. If these globals are not specified, the
default fonts will be used.

background_location

Specifies an image file (present in the images folder) to use as a background when
the game is displaying a location section.

background_dialog

Specifies an image file (present in the images folder) to use as a background when
the game is displaying a dialog section.

color_background
color_disabled
color_txt
color_opt
color_chr
color_use
color_name
color_facebg

These globals controls the text display color for the various text areas in the game.
They specify the index in the palette (0 to 255) of the color to use for each text. If
not specified, defaults will be calculated and used.

Adjustingimages

Yarnspin has a built-in editor to make basic adjustment to your images and
portraits, and preview how they will look after processing, as well as try them out
with different palettes. You can run the image editor by launching yarnspin with
the commandline parameters -i or --images, like this:

yarnspin --images

6.Additional Resources
Story structure

Arttutorials

Poser

Al

Sound

Music

Yarnspin source code

Other game developmenttools

